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ABSTRACT 
 
Machine Learning (ML) is a subset of Artificial Intelligence plays an important role in 
healthcare, providing predictive models created from algorithms and large databases. 
These models can classify patients for diagnostic or prognostic purposes in various 
diseases. This research aimed to develop a predictive model for death due to Severe 
Acute Respiratory Syndrome (SARS) for children aged 0 to 3 years in the North region 
of Brazil, using data provided by the Brazilian Ministry of Health. An applied research 
was carried out using the CRISP-DM methodology that guided the entire process of 
selection, processing, transformation, application of ML algorithms and evaluation of 
the model. The Random Forest, Logistic Regression, K-Nearest Neighbors and 
XGBoost algorithms were used through the Weka software, where the model with 
Random Forest had superior performance. The model was generated with cross-
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validation and evaluated according to the metrics of sensitivity, specificity, accuracy, 
precision, F1-Score and AUC-ROC, the latter being the primary evaluation metric. 
Finally, a software application prototype for using the model was developed in the Java 
language so that the knowledge generated by the model reaches healthcare 
professionals. 
 
Keywords: Artificial Intelligence. Machine Learning (ML), Database, Severe Acute 
Respiratory Syndrome (SARS), Predictive Models. 
 

 
 
RESUMO 
 
O Machine Learning (ML) é um subconjunto da Inteligência Artificial, tem um papel 
importante na área da saúde, fornecendo modelos preditivos criados a partir de 
algoritmos e grandes bases de dados. Estes modelos podem classificar pacientes 
para fins de diagnóstico ou prognósticos em diversas doenças. A presente pesquisa 
teve como objetivo o desenvolvimento de um modelo preditivo de óbito por Síndrome 
Respiratória Aguda Grave (SRAG) para crianças de 0 a 3 anos da região Norte do 
Brasil, através de dados disponibilizados pelo Ministério da Saúde do Brasil. Uma 
pesquisa aplicada foi realizada através da metodologia CRISP-DM que guiou todo o 
processo de seleção, processamento, transformação, aplicação dos algoritmos de ML 
e avaliação do modelo. Os algoritmos Random Forest, Regression Logistic, K-Nearest 
Neighbors e XGBoost foram utilizados através do software Weka, onde o modelo com 
o Random Forest teve desempenho superior. O modelo foi gerado com validação 
cruzada e avaliado conforme as métricas de sensibilidade, especificidade, acurácia, 
precisão, F1-Score e AUC-ROC, sendo esta última a métrica primária de avaliação. 
Por fim, um protótipo de aplicação de software para uso do modelo foi desenvolvido 
na linguagem Java para que o conhecimento gerado pelo modelo chegue aos 
profissionais da área da saúde.  
 
Palavra-chave: Inteligência Artificial. Machine Learning (ML), Banco de dados, 
Síndrome Respiratória Aguda Grave (SRAG), Modelo Preditivo. 
 

 

 

 

INTRODUCTION 

 

Machine Learning (ML) is a set of rules used to teach computers to automatically 

“learn” patterns and behaviors from training data (SILVA E, 2022), (SENA, 2021). The 

main objective of an ML model is to build a computer system that learns from a 
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predefined database and ultimately generates a model for prediction, classification, or 

detection (PAIXÃO et al., 2022). In practice, ML applications are mainly focused on the 

use of consolidated databases containing heterogeneous information, for which 

traditional statistical techniques have limited applicability (PAIXÃO et al., 2022). ML 

algorithms have already been widely adopted across various fields, including banking 

systems for fraud detection (LOPES, 2019), internet search engines (CARVALHO, 

2012), video surveillance systems (MOITINHO & BENICASA, 2023), data security 

(HENKE et al., 2018), robotics (RYBCZAK et al., 2024), and in medicine for diagnosis 

and prognosis (GROSSARTH et al, 2023). In the medical field, with the digitization of 

medical records, laboratory tests, and imaging exams, there has been a significant 

growth in databases, which are prime sources for applying ML techniques aimed at 

disease prevention, early diagnosis, and treatment (PAIXÃO et al., 2022).  

ML algorithms can be broadly divided into two categories: supervised and 

unsupervised learning. In unsupervised learning, the ML model extracts data features 

and builds a representation without prior knowledge of the data labels; in other words, 

it heuristically identifies class patterns. This lack of supervision can be advantageous 

as it allows the algorithm to analyze patterns that were previously not considered 

(SENA, 2021), (PAIXÃO et al., 2021). In supervised learning, the ML model has 

knowledge of the data labels, meaning the samples are correctly defined. Training is 

based on comparing the results predicted by the model with the actual values. This 

process is repeated until a minimum error is achieved (PAIXÃO et al., 2021). 

Therefore, if the result of a supervised ML model prediction is a category, the task is 

called classification, such as predicting a student's grade in a subject within the 

categories A, B, C, D, and E. However, if the prediction is a specific numerical value, 

then the task is called regression, such as predicting a student's grade in a subject. 

ML algorithms can learn through parameter changes (such as linear weights) or 

learning structures (such as trees) (SILVA E, 2022). 

ML algorithms can be broadly divided into two categories: supervised and 

unsupervised learning. In unsupervised learning, the ML model extracts data features 

and builds a representation without prior knowledge of the data labels; in other words, 

it heuristically identifies class patterns. This lack of supervision can be advantageous 

as it allows the algorithm to analyze patterns that were previously not considered 
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(SENA, 2021), (PAIXÃO et al., 2021). In supervised learning, the ML model has 

knowledge of the data labels, meaning the samples are correctly defined. Training is 

based on comparing the results predicted by the model with the actual values. This 

process is repeated until a minimum error is achieved (PAIXÃO et al., 2021). 

Therefore, if the result of a supervised ML model prediction is a category, the task is 

called classification, such as predicting a student's grade in a subject within the 

categories A, B, C, D, and E. However, if the prediction is a specific numerical value, 

then the task is called regression, such as predicting a student's grade in a subject. 

ML algorithms can learn through parameter changes (such as linear weights) or 

learning structures (such as trees) (SILVA E, 2022). 

In recent years, ML has stood out as an important technological solution in 

healthcare, enabling the analysis of large datasets to extract knowledge in record time, 

promoting advancements in improving diagnoses and predicting clinical events, such 

as cases of Severe Acute Respiratory Syndrome (SARS) (BEZERRA & ALMEIDA, 

2024). SARS is a serious medical condition that involves the rapid deterioration of 

respiratory symptoms, often leading to severe complications and even death. This 

syndrome can be triggered by various causes, including viral infections such as 

Influenza A (H1N1) and SARS-CoV-2 (COVID-19), among others, as well as bacterial 

infections (LEE et al., 2024). 

In this regard, predictive models developed using ML can identify patients at 

greater risk of mortality from SARS, providing support for interventions aimed at 

reducing deaths (MOULAEI et al., 2022). The knowledge generated through ML can 

assist in the prognosis of SARS, helping healthcare professionals to better allocate 

material and human resources in the treatment of patients with a higher chance of 

death. ML helps predict the severity and progression of diseases like SARS by 

analyzing large datasets of electronic health records, clinical assessments, and 

images. These models support decision-making at various stages, from triage to 

hospital discharge, ensuring that resources such as ICU beds, ventilators, and medical 

staff are used efficiently to prioritize the most needy patients and improve overall 

patient outcomes (DEBNATH et al., 2020), (VAN DER SCHAAR et al., 2021). Besides 

generating models, creating mechanisms to make them available to healthcare 



 
 
 

ISSN: 16799844 – InterSciencePlace – International Scientific Journal                    Page 382 

professionals is important, as seen in the studies of Aznar-gimeno et al. (2021), Woo 

et al. (2021), Hu et al. (2021), and Kar et al. (2021). 

In this context, the objective of the present work is to demonstrate the practical 

application of ML in the health area, through the generation of predictive models of 

death and cure for patients with SARS registered in the 2020 and 2021 SARS 

databases of the Ministry of Health available on the openDataSUS portal. Maintained 

by the Health Surveillance Secretariat (SVS), these databases stand out as an 

important repository of data on patients hospitalized for SARS. The available records 

are captured by the Influenza Epidemiological Surveillance Information System 

(SIVEP-Gripe), which tracks SARS cases and deaths in Brazil, caused by viruses such 

as SARS-CoV-2, Influenza A (H1N1), among others (BRASIL, 2024). Finally, it is 

noteworthy that the SARS databases on openDataSUS are published under Creative 

Commons Attribution (cc-by) and Open Data formats, allowing others to share, remix, 

adapt, and create derivative works (BRASIL, 2024). Another important factor is that all 

available records are anonymized according to the guidelines of Brazil's General Data 

Protection Law (LGPD), ensuring that no individual can be identified from the 

database. 

 

METHODOLOGY 

 

The CRISP-DM methodology is a widely recognized and used framework to 

guide Data Mining (DM) and ML projects. It consists of a cycle of six non-rigid phases, 

allowing for forward and backward movement between phases whenever necessary. 

The result of each phase determines which phase or activity of a particular phase 

should be performed next (CHAPMAN et al., 2000). The application of the CRISP-DM 

methodology was carried out according to the adaptation made by Sena (2021), and 

will be guided solely by the goals and activities of each phase. 

The first phase, Business Understanding, focused on understanding the 

objectives and requirements of the project from a business perspective. At this stage, 

the risks and technical criteria for the project were also evaluated, along with the 

potential benefits, final goals, and success criteria. Tools for data analysis, 

manipulation, transformation, and model creation were also defined during this phase. 
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In the second phase, Data Understanding, the dataset was examined in depth, 

considering all relevant aspects. Data was collected for children aged 0 to 3 years. The 

dataset contained 86 attributes, subdivided into complementary attributes for the main 

attribute. For example, the attribute "41-Data of vaccination" included six additional 

fields such as "If < 6 months: the mother received the vaccine" and "If yes, date". The 

data from openDataSUS was provided in CSV format. To explore the data, MySQL 

Workbench was used along with SQL (Structured Query Language) programming.  

The third phase, Data Preparation, aimed to transform the attributes in such a 

way as to make the dataset suitable for the application of ML algorithms. After analysis 

and testing, 100 attributes from the 2021 dataset and 95 from the 2020 dataset were 

removed, most of which related to internal identification codes and dates, as they were 

not relevant to the research. New attributes were created from existing ones, such as 

NU_IDADE_N (patient's age), DIAS_UTI (number of days in the ICU), among others. 

To enhance the interpretation of the models and facilitate the manipulation of attributes 

and instances in the ML tool, it was necessary to transform the dataset according to 

the definitions in the data dictionary. For example, for the attribute TOSSE (cough), the 

data point "1" was transformed to "Yes", and "2" to "No". After manipulating the data in 

MySQL, a CSV file of the database was generated via SQL command, which could be 

read by Weka software. Once loaded into Weka, the dataset was saved in ARFF 

format, which is Weka's standard. It is worth noting that Weka also allows for the 

manipulation of attributes and instances. The datasets from 2020 and 2021 were 

unified to facilitate record selection and manipulation, and an attribute "YEAR" was 

created to identify the records. Afterward, the datasets were divided according to the 

target patient groups of the research and loaded into Weka. After this process, the 

AttributeSelection filter in Weka was used to select the best attributes, employing the 

CorrelationAttributeEva and ClassifierAttributeEval resources with the Ranker method, 

which selects the best attributes according to the algorithms selected for the project. 

The NominalToBinary filter in Weka was also used to convert nominal attributes into 

binary numerical attributes in a separate version of the dataset. This conversion was 

necessary for the use of certain algorithms, such as XGBoost, which do not handle 

nominal data. After testing with the filters, attributes that did not perform well with the 

chosen algorithms were discarded. 
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In the fourth phase, Modeling, ML algorithms were studied and applied to the 

prepared datasets to generate predictive models according to the research objectives. 

This phase encompasses the entire process of model generation, validation, 

interpretation, and the selection of the best models. Activities in this phase focused on 

selecting the appropriate modeling techniques, defining the metrics for model approval, 

and building the models with tests on the algorithms' hyperparameters. In the fifth 

phase, Evaluation, the models are assessed and validated, analyzing whether the 

knowledge generated by these models will be used in the deployment phase. These 

two phases were executed simultaneously, as model generation and evaluation are 

part of the same process. 

The algorithms Random Forest (RF), Logistic Regression (LR), XGBoost 

(Extreme Gradient Boosting), and KNN (K-Nearest Neighbors) were selected due to 

the common combination of these four algorithms in studies of this nature, as seen in 

the works of Moulaei et al. (2022), Schöning et al. (2021), and Kivrak et al. (2021). 

 

Random Forest  

 

Random Forest (RF) consists of a classifier composed of multiple trees, or a 

forest of decision trees (SENA, 2021). In this algorithm, decision trees are constructed 

and represented by two elements: nodes and branches that connect nodes. For 

decision-making, the flow starts at the root node and navigates through the branches 

until reaching a leaf node. Each tree node denotes a test of an attribute, and the 

branches represent the possible values the node can assume. During tree formation, 

also known as training or learning, the homogeneity of the classes for each node 

division is considered. Essentially, the algorithm evaluates the information gain of 

attributes to separate the samples in the training dataset (LIMA et al., 2021). For 

instance, during the model's construction, three classifiers (trees) are built, and a new 

instance is labeled by each classifier. If the three classifiers make distinct errors, when 

one is incorrect, the second and third may be correct, so that the combination of 

hypotheses through voting can classify correctly. This technique, known as bagging, 

or Bootstrap Aggregation, is used in regression or classification models to improve 

model stability and accuracy (HU et al., 2021), (SILVA & NETO, 2022). 
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One of Random Forest's main advantages is the ease of measuring the relative 

importance of each attribute for prediction, automatically calculating this value for each 

attribute after training; the higher the value, the more important the attribute is. For this, 

the algorithm uses Gini Impurity (GI), an index for evaluating attributes in separating 

samples with the same label, seeking class homogeneity to form a node. The index 

assesses all predictors randomly selected to construct the tree and will choose the one 

with the highest degree of homogeneity among the samples (LIMA et al., 2021). 

Figure 1 demonstrates how a random forest works in the classification process. 

It is worth noting that the final result is obtained by the average (in the case of 

regression) or by the majority of votes (in the case of classification) of the predictions 

of all the trees. 

Figure 1 - Example of Random Forest Scheme 

 

Fonte: SILVA E (2022) 

 

Logistic Regression 

 

Logistic Regression (LR) is a linear model used for classification. It is also 

referred to in the literature as logit regression, maximum entropy classification, or log-

linear classifier. Binary logistic regression refers to cases of logistic regression where 

the dependent variable is binary or dichotomous, meaning it can only take on two 

values (SILVA & NETO, 2022). Logistic regression is used to estimate the association 

between one or more independent (predictor) variables and a binary dependent 

variable (outcome). A binary (or dichotomous) variable is a categorical variable that 

can only assume two distinct values or levels, such as "dead" or "alive," for example. 

Logistic regression can be used to estimate the probability (or risk) of a specific 
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outcome based on the values of the independent variables. It is important to note that 

this probability is given as a value between 0 and 1, that is, 1 for "alive" and 0 for "dead" 

in the aforementioned example (SCHOBER & VETTER, 2021). 

The general formula for logistic regression applies the sigmoid function to the 

linear combination of the independent variables, which allows the linear output to be 

transformed into a probability between 0 and 1. The following Equation 1 shows the 

logistic regression formula for binary classification problems: 

𝑃(𝑌 = 1) =
1

1+𝑒(𝛽
0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝐾𝑋𝐾)

            (1) 

where P(Y=1) represents the probability of the event of interest occurring, 𝛽0is the 

intercept, 𝛽1, 𝛽2,..., 𝛽𝐾 are the coefficients of the independent variables 𝑋1, 𝑋2, ..., 𝑋𝐾, 

e 𝑋1and is the base of the natural logarithm, also called Euler's number which 

corresponds to the number 2.71 (HOSMER et al., 2013). Figure 2 presents an example 

of logistic regression classification. 

 
Figure 2 - Example of a Classification Model with Logistic Regression

 

Fonte: Autor 

 

KNN – K-Nearest Neighbors  

 

The K-Nearest Neighbors (KNN) algorithm is a widely used machine learning 

method for binary classification problems due to its simplicity and effectiveness. This 

algorithm also supports non-binary classification and regression tasks. The 

fundamental principle of KNN is to determine the class of a data point based on the 

classes of its nearest neighbors in a multidimensional space. In a binary classification 

problem, each data point is labeled with one of two possible classes, and the objective 
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of KNN is to predict the class of new data points based on previous observations. To 

implement KNN, it is first necessary to choose a value for K, which represents the 

number of neighbors to be considered (MLADENOVA & VALOVA, 2023). Then the 

algorithm calculates the distance between the data point to be classified and all the 

data points in the training set. The distance can be any metric measure, such as 

Manhattan distance, Minkowski distance, or Euclidean distance, the latter being one 

of the most commonly used (SILVA E, 2022). Once the distances are calculated, KNN 

identifies the K nearest data points and determines the predominant class among 

these neighbors (MLADENOVA & VALOVA, 2023). Figure 3 below illustrates this 

process: 

 
Figure 3 - Classification steps with KNN 

 

Fonte: Mladenova & Valova, 2023 (traduzido) 

 

XGBoost – Extreme Gradient Boosting 

 

XGBoost - Extreme Gradient Boosting, is a decision tree-based ML algorithm 

designed to be highly efficient and scalable. It uses a boosting approach, where 

multiple trees are built sequentially, each correcting the errors of the previous one 

(CHEN & GUESTRIN, 2016). XGBoost is an iterative decision tree algorithm with 

multiple decision trees. Each tree is learning from the residuals of all previous trees. 

Instead of adopting the majority of voting output results in the Random Forest 

algorithm, the predicted output of XGBoost is the sum of all the results (WANG et al., 

2019). XGBoost creates a model that is the sum of multiple decision trees from the 

following Formula 2: 
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ŷ𝑖 = ∑

𝑛

𝑘=1

𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹(2) 

where F stands for the space of regression trees,𝑓𝑘 corresponds to a tree, then 𝑓𝑘(𝑥𝑖)is 

the result of tree 𝑘,∧ ŷ𝑖 is the predicted value of the i-th instance 𝑥𝑖 (WANG et al., 2019). 

The main objective of XGBoost is to minimize a regularized cost function that includes 

both the loss function, which measures the discrepancy between model predictions 

and actual values, and regularization terms that penalize model complexity to avoid 

overfitting. This additional regularization differentiates XGBoost from other boosting 

algorithms, making it more robust and able to generalize better to new data (WANG et 

al., 2019). The objective function is given by Equation 3 below:  

𝑂𝑏𝑗(𝜃) = 𝐿(𝜃) + Ω(𝜃)(3) 

where L(θ) is the loss function that measures the difference between the predictions 

(𝑖) and the actual values (WANG et al., 2019). Finally, for binary classification the 

common loss function is the log-loss given by Equation 4 below, where 𝑙(𝑦𝑖, ŷ𝑖) is the 

logarithmic loss between the real value and the prediction (𝑖) (WANG et al., 2019).  

𝐿(𝜃) =∑

𝑛

𝑖=1

𝑙(𝑦𝑖, ŷ𝑖)(4) 

Figure 4 below illustrates the working process of the XGBoost algorithm, 

highlighting how it combines multiple decision trees to form a robust and accurate 

model. 

Figure 4 - XGBoost Architecture 

 

Fonte: Wang et al. (2019) 

 

At the top of the image, the input variables 𝑥 (features) and 𝑦 (labels) are 

provided to the model. The process begins with the construction of the first decision 
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tree (Tree 1). The prediction function of this tree is denoted by 𝑓1. Then the second tree 

(Tree 2) is constructed. It is based on the residuals or errors of the predictions of the 

first tree and its prediction function is 𝑓2. This process continues successively, with 

each tree trying to correct the errors of the predictions of the previous trees. The 

predictions of all trees are combined to form a final prediction. The formula that 

represents this combination is given by Equation 1 and the final prediction ŷ𝑖 is the sum 

of the predictions of all trees (WANG et al., 2019).  

 

Evaluation Metrics in the Modeling and Evaluation Phase 

 

The Cross-Validation process was used to evaluate the performance and overall 

error of models. Cross-validation is a resampling procedure used to assess machine 

learning models on a data sample. The procedure has a single parameter called k, 

which represents the number of groups used to divide a given data sample. In 10-fold 

cross-validation (the standard number of folds), models are trained and tested ten 

different times, and the average performance metrics (e.g., accuracy, precision, etc.) 

are estimated at the end of the process (KIVRAK et al., 2021). It is important to note 

that cross-validation is a widely applied and preferred validation technique in machine 

learning and data mining due to its difference from the conventional split-sample 

method. This method helps reduce bias in prediction error, maximizes the use of data 

for both training and validation without overfitting or overlap between test and validation 

data, and avoids arbitrary data splitting, which can introduce bias into the model's 

results (MOULAEI et al., 2022). For the cross-validation of training and testing models, 

20 iterations (folds) were used, as found in the literature (YU et al., 2021; ZAREI et al., 

2022; AN et al., 2020; SUN et al., 2021; MAHDAVI et al., 2021). Thus, the generated 

models with the seeds that achieved the best performance were documented. 

Evaluation metrics for the models were defined based on current literature on 

the subject. Model performance evaluation is a crucial part of building an effective 

machine learning model. Several metrics are applied to assess predictive models, with 

the most common being accuracy, specificity, precision, sensitivity, and criteria from 

the ROC (Receiver Operating Characteristic) curve. Finally, these evaluation criteria 

are compared to determine the best predictive model (MOULAEI et al., 2022). To 
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calculate these performance metrics, the confusion matrix of the generated model 

must be obtained. The confusion matrix is a table used to assess the performance of 

a classification model by displaying the number of correct and incorrect predictions, 

organized according to actual and predicted classes. It allows the visualization of 

correct predictions (True Positives – TP and True Negatives – TN) and errors (False 

Positives – FP and False Negatives – FN). In the confusion matrix, TN corresponds to 

the number of negative results correctly classified, TP is the number of positive results 

correctly classified, FP is the number of negative results incorrectly classified as 

positive, and FN is the number of positive results incorrectly classified as negative 

(BÁRCENAS et al., 2022; BOOTH et al., 2021). Table 1 below presents the format of 

the confusion matrix and the position of correct and incorrect predictions. 

  

 
Table 1 - Confusion Matrix Model 

 
 

Expected Value 

 Death (+) Cure (−) 

Rea
l 

Val
ue 

Death (+) TP FN 

Cure (−) FP TN 

Fonte: Moulaei et al. (2022) 
Note: TP - True Positives, TN - True Negatives, 
FP - False Positives and FN - False Negatives 

 
The accuracy, precision, sensitivity and specificity metrics of the models are 

calculated from the confusion matrix data, as highlighted in Table 2 below. 

 Table 2 - Performance Criteria Calculations 

Performance Criteria Cálculo 

Accuracy (TP + TN) / (TP + TN + FP + FN) 

Precision TP / (TP + FP) 

Sensitivity (Recall) TP / (TP + FN) 

Specificity TN / (TN + FP) 

F1-Score 
2  * Accuracy * Sensitivity / (Accuracy + 
Sensitivity) 

Source: Moulaei et al. (2022) and Bárcenas & Fuentes-García (2022) 
Note: TP - True Positives, TN - True Negatives, 
FP - False Positives and FN - False Negatives 

 

Accuracy represents the total percentage of correct predictions of a model. 

However, this metric is not always the best for evaluating classification models, 

especially in cases of imbalanced datasets. In situations where one class is 
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significantly more frequent than the other, accuracy can be misleading, failing to reflect 

the true performance of the model across all classes. This may lead the analyst to 

believe that the model is good at correctly predicting class A, while making many errors 

in predicting class B. Therefore, it is important to consider other metrics beyond 

accuracy, such as precision, sensitivity (or recall), and the F1-score. Precision 

measures the model's ability to avoid false positives, indicating the percentage of 

correct predictions among all instances classified as positive. Sensitivity, or recall, 

indicates the model's ability to correctly identify all positive instances, showing the 

percentage of correct predictions among all instances that are indeed positive. The F1-

score combines precision and sensitivity into a harmonic mean, providing a balanced 

evaluation of the model’s performance, especially in imbalanced datasets (SILVA & 

NETO, 2022). 

Another important metric is the ROC curve and the calculation of the AUC (Area 

Under the Curve). The ROC curve measures the predictive ability of the model through 

the sensitivity and specificity rates, representing these metrics in a graph. The AUC 

quantifies the total area under the ROC curve and provides a single metric for the 

model’s performance, independent of a specific decision threshold. This technique is 

used to visualize, organize, and rank the model based on its predictive performance. 

Practically speaking, the closer the curve is to the top left corner of the graph, the better 

the model’s performance (SILVA & NETO, 2022). The AUC is the result of integrating 

all points along the curve's path and simultaneously computes both sensitivity and 

specificity, serving as an estimator of the overall test accuracy. It provides an estimate 

of the probability of correctly classifying a subject by chance (test accuracy); for 

example, an AUC of 0.7 reflects a 70% chance of correct classification. In general, 

AUC values are interpreted as follows: 0.5-0.6 (very poor), 0.6-0.7 (bad), 0.7-0.8 

(poor), 0.8-0.9 (good), and > 0.9 (excellent) (POLO & MIOT, 2020). Finally, it is worth 

noting that many authors in the literature (KIVRAK et al., 2021; SILVA & NETO, 2022; 

FERNANDES et al., 2021; VEPA et al., 2021; BÁRCENAS et al., 2022; SUN et al., 

2021; BENNETT et al., 2021; ARAÚJO et al., 2022) have used accuracy, sensitivity, 

specificity, precision, F1-score, and AUC-ROC metrics to evaluate their predictive 

models for mortality from severe acute respiratory syndrome (SARS). In this context, 

as noted by Bennett et al. (2021) and Moulaei et al. (2022), AUC-ROC was considered 
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the primary metric, while sensitivity, specificity, accuracy, precision, and F1-score were 

used as secondary metrics to assess and define the best model. 

Analyzing the importance of attributes in predictive models is essential for 

understanding which factors have the greatest influence on outcomes. The evaluation 

of attribute importance in a Random Forest model uses the Gini index reduction to 

determine which variables contribute most significantly to the prediction of results, 

highlighting the most influential factors in the classification process (MOSLEHI et al., 

2022; BÁRCENAS & FUENTES-GARCÍA, 2022). To obtain the Gini index, the R library 

was used via the Weka interface, as the original Weka library does not directly 

generate the index. For this purpose, the script was programmed and executed as 

follows: 

1. library(randomForest) 
2. data <- rdata 
3. data_sem_missing <- na.omit(data) 
4. modelo <- randomForest(EVOLUCAO ~ ., data = data_sem_missing) 
5. importancia <- importance(modelo) 
6. print(importancia) 

 

The representation of the index in a graph is common in the literature 

(KUMARAN et al., 2022), (MOSLEHI et al., 2022), (BÁRCENAS & FUENTES-

GARCÍA, 2022), (ZHAO et al., 2022) (AZNAR-GIMENO et al., 2021), (HELDT et al., 

2021) and facilitates understanding. Therefore, the Gini indices of the Random Forest 

models were demonstrated by graphs.. 

 

Balancing Experiment in the Modeling and Evaluation Phase 

 

An imbalance in the data was identified. Moulaei et al. (2022) highlights that one 

of the main challenges for machine learning algorithms is the problem of imbalanced 

data, which occurs when classes are not equally represented. As a result, models 

trained on such data tend to show bias toward the dominant class, potentially leading 

to a tendency to categorize new observations into the majority class. Upon reviewing 

the RI studies, it was found that the authors addressed this imbalance in various ways. 

Azgnar-Gimeno et al. (2021), Moulaei et al. (2022), Heldt et al. (2021), Zarei et al. 

(2022), Araújo et al. (2022), and Vepa et al. (2021) used the Synthetic Minority Over-
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sampling Technique (SMOTE) to balance the dataset. This technique creates synthetic 

instances of the minority class based on known patterns, matching the size of the 

majority class (ARAÚJO et al., 2022; MOULAEI et al., 2022). On the other hand, 

studies by Li J et al. (2022), Schöning et al. (2021), Booth et al. (2020), Gao et al. 

(2020), and An et al. (2020) used class weighting techniques to automatically adjust 

the weights of instances so that each class is equally important during model training 

(BOOTH et al., 2020; LI J et al., 2022). Finally, authors such as Woo et al. (2022), 

Yadaw et al. (2020), Bottrighi et al. (2022), Li Y et al. (2020), Yu L et al. (2021), and 

Bárcenas & Fuentes-García (2022) assumed that the data were imbalanced and did 

not address balancing. Thus, a balancing experiment was conducted using different 

techniques to identify possible improvements in model performance and the practical 

implications of balancing, following current literature. The experiment was performed 

using the Random Forest algorithm.  

Table 3 below shows that the results with SMOTE yielded superior performance 

in sensitivity and F1-score compared to the other models, but with little variation in 

AUC-ROC performance. However, this performance gain comes at the cost of creating 

many synthetic instances for the "Death" class, which may represent patterns that do 

not exist in the real data. Conversely, the class weighting balance performed using the 

ClassBalancer filter in Weka showed slightly better sensitivity compared to the 

unbalanced model, but with inferior AUC-ROC performance. In this regard, the 

decision was made to use the unbalanced data since there were no significant 

improvements with balancing, following the approach of Araújo et al. (2022), which 

indicates that recent studies suggest "imbalance is not a problem in itself: correction 

methods for imbalance can cause poor calibration and even worsen model 

performance in terms of AUC-ROC." Additionally, the F1-score metric, evaluated in 

this research, provides a global assessment of the model regardless of the sample 

size in each class. 
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Table 3 - Comparison of the Balancing Experiment for Positive Death Outcome 

Metrics Unbalanced 
Balanced 

with 
SMOTE 

Balanced 
with 

ClassBalan
cer 

Aver
age 

Stand
ard 

Deviat
ion 

True Positives (TP) 253 6665 3523 3480 3206 

False Positives (FP) 11 35 113 53 53 

True Negatives (TN) 7066 7042 3620 5909 1983 

False Negatives (FN) 239 223 1213 558 567 

Precision 0.958 0.995 0.969 
0.97

4 
0.019 

F1-Score 0.669 0.981 0.842 
0.83

1 
0.156 

Sensitivity 0.514 0.968 0.744 
0.74

2 
0.227 

Specificity 0.998 0.995 0.970 
0.98

8 
0.015 

Accuracy 0.966 0.981 0.843 
0.93

0 
0.076 

AUC-ROC 0.950 0.996 0.946 
0.96

4 
0.028 

Source: Author 

 

In the CRISP-DM methodology, the implementation phase describes the use of 

knowledge generated by the project within an organization. However, since this is an 

academic work, the first activity of this phase was adapted to provide the 

implementation of knowledge through a software application. The software application 

was developed in Java language with the Apache Netbeans IDE 20 tool for desktop 

format, that is, it can be installed on any PC device. The weka.jar code library was 

used to access the model's loading, classification and evaluation features. The choice 

of the Java programming language was due to the possibility of using the weka.jar 

library, in addition to the author's experience with the language. 

 

RESULTS 

  

Weka was chosen due to its ability to integrate Python ML libraries and the R 

software library directly into its interface, making Weka a comprehensive tool with a 

user-friendly interface. The choice of this tool aligns with the literature on the subject, 

where Weka was used by authors Bottrighi et al. (2022) and Moulaei et al. (2022) in 

their research on predictive models for mortality due to severe acute respiratory 
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syndrome (SARS). In addition to the previously mentioned tools, MySQL Workbench 

by Oracle was used to manipulate and transform the database records. This tool was 

selected due to its ability to program SQL scripts, allowing for automation of the 

process. Another key factor was MySQL's ability to handle large data volumes. 

The SQL script used for cleaning and transforming the 2020 and 2021 datasets 

is available in the Zenodo file repository under the DOI – Digital Object Identifier at the 

link: https://doi.org/10.5281/zenodo.10850628. The list of all excluded attributes can 

be found in the SQL cleaning script from line 366, marked with the comment "#cleaning 

of unselected attribute base." The unified database with records from 2020 and 2021 

includes a total of 291,775 patients from the Northern region, considered eligible for 

model application, and is available in the Zenodo repository at 

https://zenodo.org/doi/10.5281/zenodo.12636544 in ARFF format, which can be read 

by Weka. After this cleaning and transformation process, the database was made 

available in the Zenodo repository in ARFF format at 

https://zenodo.org/doi/10.5281/zenodo.10879240, containing 9471 records. Due to 

missing data in the "evolution" class attribute, 3204 records were excluded, leaving 

7569 records for model generation, with 7077 cases of recovery and 492 deaths. Thus, 

the final version of the dataset used for the modeling phase contained 40 attributes. 

The attribute EVOLUTION was defined as the class, with "Cure" or "Death" as 

possible outcomes. The models were evaluated by considering the "Death" class as 

positive, as the goal of the predictive model is to predict the death of patients from 

SARS. Regarding cross-validation, Weka's "Random Seed for XVal" feature was 

tested with 20 different seeds for each algorithm and dataset. Accuracy was evaluated, 

and the standard deviation of the means was less than 0.01% in all tests, indicating no 

statistically significant differences. The documented models were generated using 

seed 8 for Random Forest (RF), 11 for Logistic Regression (LR), 8 for KNN, and 20 for 

XGBoost. To obtain highly reliable models capable of efficiently predicting the "Death" 

class, various experiments were conducted to find the best hyperparameters for each 

analyzed ML model. The following hyperparameters were determined: For Random 

Forest, the number of trees was set to 110; for KNN, the number of neighbors was set 

to 1, with the Euclidean Distance function; for XGBoost, the R library was used via 

https://doi.org/10.5281/zenodo.10850628
https://zenodo.org/doi/10.5281/zenodo.12636544
https://zenodo.org/doi/10.5281/zenodo.10879240
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Weka's interface with the dataset transformed into binary data; and finally, for Logistic 

Regression, Weka's default settings were used. 

 

Métricas do Modelo Preditivo 

 

Table 4 below presents the confusion matrix data of the generated models. 

 

Table 4 - Confusion Matrix 

 Predição 

RandomForest Death (+) Cure (−) 

Death (+) 261 231 

Cure (−) 9 7068 

 

Logistic Regression Death (+) Cure (−) 

Death (+) 106 386 

Cure (−) 83 6994 

 

KNN Death (+) Cure (−) 

Death (+) 327 165 

Cure (−) 98 6979 

 

XGBoost Death (+) Cure (−) 

Death (+) 139 353 

Cure (−) 70 7007 
Source: Adapted from Kivrak et al. (2021) 

 

Table 5 below presents the performance metrics of the ML algorithms on the 

generated models. 

 

Table 5 - Performance Evaluation of Algorithms 

Algorithms 
Sensitivit

y 
Specificity Accuracy Precision 

F1-
Scor

e 

AUC-
ROC 

Random Forest 0.530 0.999 0.968 0.967 0.68
5 

0.951 

Logistic 
Regression 

0.215 0.988 0.938 0.561 0.31
1 

0.861 

KNN 0.665 0.986 0.965 0.769 0.71
3 

0.843 

XGBoost 0.283 0.990 0.944 0.665 0.39
7 

0.837 
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Source: Adapted from Moulaei et al. (2022) 

 

Figure 5 below shows graphs with the ROC Curve and AUC of each algorithm 

for the purpose of comparing the performance of the generated models, where the 

superior performance of the model created with the Random Forest algorithm can be 

seen. 

Figure 5 - AUC-ROC of the Models 

 

Source: Adapted from Silva & Neto (2022) 

 

Figure 6 below shows the graph with the most important attributes considered 

by the model with Random Forest. 
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Figure 6 - Graph with Gini Index 

 

Source: Adapted from Zhao et al. (2022) 

 

 

Scenario Simulation with the Application Prototype 

 

The following images will show the application's features, which can be 

downloaded and used by any user with access to a desktop computer. Figure 7 below 

shows the application's initial menu with the options. 

 

Figure 7 - Application Home Menu 

 

Source: Author 
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In the initial menu, the user can select three different classifiers, depending on 

the profile of the patient they wish to classify. It is worth noting that the audiences were 

defined according to the research objectives. After selecting the desired profile in the 

initial menu, the system will open the classifier for the group. Figure 8 below shows the 

classification functionality without filling in the patient characteristics. 

 

Figure 8 - Classifier 

 

Source: Author 

 

The user can then enter the characteristics of the patient to be classified using 

combo boxes and then click on the Classify button. Or, they can return to the Home 

Menu by clicking on the Back button. During the classification process, the system will 

display a progress bar while the classification is taking place. After the process is 

complete, the chances of death and cure for the patient will be displayed. The 

confidence shown is the percentage of accuracy of the model based on the test 

database, i.e., the accuracy of the model. This value is calculated by the application 

when testing the model with all records in the database, after training the model using 

cross-validation. 

Figure 9 below shows a scenario simulation, with the change in the functionality 

state after the classification action, where the probabilities of death and cure predicted 
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by the model for the child are presented according to the characteristics informed. It 

can be seen that in this scenario the child does not have risk factors, symptoms or has 

been hospitalized. Therefore, the probability of cure predicted by the model is high. 

Figure 9 - Children Classifier with Result of Scenario I Simulation 

 

Fonte: Autor 

The probability is given by the prediction model after classifying the patient 

based on the set of characteristics informed in the interface before clicking the Classify 

button. In the simulated scenario, the probabilities of Cure and Death change as the 

patient's characteristics change. Figure 10 below shows the classification for the child 

in the simulation of a second scenario, where characteristics about risk factors and 

symptoms common to SARS were inserted. 
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Figure 10 - Children Classifier with Result of Scenario II Simulation 

 

Source: Author 

 

The simulation of scenarios presented previously demonstrates the reduction in 

the chances of cure and the increase in the chances of death as the patient's 

characteristics change, highlighting the predictive model's ability to deal with factors 

related to the degradation of the patient's health. Finally, the application's source code 

is deposited in the GitHub code repository (private access) and can be accessed and 

downloaded via the link: https://github.com/jacksonifro/Aplication_Tese_Doutorado.git 

upon request. To open the application, the Apache Netbeans IDE 20 tool is required. 

The application's installation setup to be installed on Windows or Linux operating 

systems is available for download in the Zenodo repository via DOI: 

https://zenodo.org/doi/10.5281/zenodo.10951429. 

 

DISCUSSION 

 

This study represents an important advance in the creation of classification 

models capable of identifying patients at higher risk of death from SARS in vulnerable 

population groups in the North region. Predictive models for classification were 

developed and compared with four different algorithms: Random Forest, Logistic 

https://github.com/jacksonifro/Aplication_Tese_Doutorado.git
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Regression, KNN and XGboost. The models were evaluated according to the metrics 

of sensitivity, specificity, accuracy, precision, F1-Score and AUC-ROC, the latter being 

the primary evaluation metric. As highlighted by Polo & Miot (2020), an AUC-ROC 

greater than 0.90 is considered an excellent performance index for a quantitative data 

model according to its sensitivity rate (fraction of true positives) and the fraction of false 

positives (1 - specificity), according to different test cutoff values. Thus, the following 

discussions consider this threshold for assessing the quality of the model in terms of 

robustness and reliability. 

The model generated with the Random Forest algorithm offers robust and 

reliable performance, achieving an AUC-ROC of 0.951, sensitivity of 0.530, specificity 

of 0.999, accuracy of 0.968, precision of 0.967 and F1-Score of 0.685. These results 

indicate an excellent ability to distinguish between classes. Although it was surpassed 

by KNN in sensitivity and F1-Score with 0.665 and 0.713 respectively, the overall 

balance of the other metrics makes its performance superior. It is worth mentioning 

that despite KNN's advantage in sensitivity, its performance is inferior to that of 

Random Forest and Logistic Regression in AUC-ROC, where it reached only 0.843. 

Another important point is that despite the imbalance of the classes, it was found that 

there was no great advantage of KNN over Random Forest, with a difference of only 

0.028 in F1-Score. In this context, the Random Forest algorithm obtained the best 

overall performance, with the model generated by it being chosen for classifying 

children aged 0 to 3 years in the application. 

These results are in line with the literature on the subject. Heldt et al. (2021) 

evaluated the performance of the Random Forest, Logistic Regression, and XGBoost 

algorithms using a dataset of 619 English patients with demographic, clinical, and 

laboratory data to predict mortality from SARS-Cov-2. Random Forest generated the 

best model with AUC-ROC of 0.77, against 0.70 and 0.76 from Logistic Regression 

and XGBoost, respectively. In another study (MOULAEI et al., 2022), demographic, 

clinical, laboratory, and risk factor data from 1,500 Iranian patients hospitalized with 

SARS-Cov-2 were used. Random Forest generated the best model with AUC-ROC of 

0.77, against 0.70 and 0.76 of Logistic Regression and XGBoost respectively. In 

another study (MOULAEI et al., 2022), demographic, clinical, laboratory and risk factor 

data from 1,500 Iranian patients hospitalized with SARS-Cov-2 were used. The results 
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of this study showed that the model developed using the Random Forest algorithm 

performed the best, with an AUC-ROC of 0.99 in predicting patient death, against the 

AUC-ROC of other compared algorithms such as XGBoost (0.981), KNN (0.967), MLP 

(0.964), Logistic Regression (0.942), J48 (0.921) and Naive Bayes (0.920). In a study 

focused on the Brazilian population, Silva & Neto (2022) used clinical data from 

134,639 patients with SARS-Cov-2 registered in the openDataSUS SARS Database 

between January and September 2021 to evaluate the performance of the Logistic 

Regression, Decision Tree and Random Forest algorithms in creating predictive death 

models. In this study, Random Forest was superior, achieving an AUC-ROC of 0.75, 

accuracy of 0.77, precision of 0.76, f1-score of 0.69, and sensitivity of 0.63 for the 

death class. The Logistic Regression algorithm achieved an AUC-ROC of 0.73 and 

Decision Tree of 0.74, being inferior to Random Forest in this and other metrics, except 

for Decision Tree, which was slightly superior in precision with 0.78. 

The KNN algorithm performed well in this study, achieving an AUC-ROC higher 

than 0.84 in the models. Bottrighi et al. (2022) obtained an AUC-ROC of 0.81 with the 

KNN algorithm in a study with 824 Italian patients using demographic data, 

comorbidities, and symptoms, being surpassed by the JRIP algorithm. The authors 

Altini et al. (2021) used the KNN algorithm in the comparison with other algorithms 

using demographic, clinical, and laboratory data from 303 Italian patients, where the 

algorithm achieved an AUC-ROC of 0.778, being surpassed by the Decision Tree 

algorithm with an AUC-ROC of 0.896.  

The Logistic Regression algorithm also achieved good performance in the 

models analyzed in this study, achieving an AUC-ROC higher than 0.86. These results 

are similar to those found by other studies on predictive death modeling, such as those 

found by authors Hu et al. (2021) and Reina et al. (2022), who obtained AUC-ROC 

performance of 0.895 and 0.871, respectively, which is superior when compared to 

other algorithms such as Random Forest, SVM, KNN, and MLP. Authors Murri et al. 

(2021) and Woo et al. (2021) also achieved superior performance of 0.87 and 0.81, 

respectively, in AUC-ROC with Logistic Regression, but these authors worked with 

only one algorithm and did not compare it with other studies.  

It is also worth noting that the XGBoost algorithm also achieved good 

performance in the models analyzed in this study, with an AUC-ROC greater than 0.83. 
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These results are in line with the findings of Aznar-Gimeno et al (2021) who obtained 

an AUC-ROC of 0.821 with the XGBoost algorithm in a study with 3,623 Spanish 

patients, outperforming the Random Forest algorithm. Also by Bárcenas & Fuentes-

García (2022) who achieved an AUC-ROC of 0.899 with XGboost in the study with 

220,657 Mexican patients, using demographic, clinical, symptom, and comorbidity 

data, also outperforming Random Forest. Thus, like Kar et al. (2021), where XGBoost 

outperformed Random Forest and Logistic Regression in a study with 2,370 Indian 

patients with clinical and laboratory data. It is worth noting that all the studies cited with 

XGBoost had as their central objective the creation and comparison of predictive death 

models.  

Based on the Gini indices of the Random Forest model, it was found that the 

most important metrics for predicting the models in the analyzed data were the 

attributes SIND_DOWN (Has Down syndrome), HEPATICA (Has liver disease) and 

SATURAÇÃO (Saturation below 95%), SUPORT_VEN (Ventilation support), 

DIAS_UTI (Number of days in the ICU), NU_IDADE_N (Patient age), SG_UF_NOT 

(Notification state) and UTI (ICU admission). These variables play a crucial role in the 

model's decision, indicating that the need for mechanical ventilation, hospitalization 

and time in the ICU, and the patient's age are the most determining factors. 

Finally, it is noteworthy that when models are made available through a software 

application that can be used in the hospital environment, this knowledge tends to be 

more widespread and actually used, not being restricted to literature alone. Thus, given 

the need to apply theory in practice, an easy-to-use software application prototype was 

developed so that health professionals could use predictive models in a hospital 

environment. 

Regarding the limitations of this study, the following stand out: the difficulty in 

generalizing the use of the models for other population groups, such as the elderly, 

since the models were trained to classify specific groups; the imbalance identified 

between the death and cure classes, with a much higher number of cured patients than 

deceased, which may affect the ability of the models to correctly predict the minority 

class (death), leading to a tendency to overestimate the classification of the majority 

class (cure); the lack of acceptance tests of the application prototype by health 

professionals, since the successful implementation of a new technology in the clinical 
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environment can be influenced by a series of factors such as usability and integration 

with existing systems; and finally, the fact that other ML techniques were not 

considered for a more comprehensive comparison, even though the study used the 

algorithms most commonly used in studies of this type. 

 

CONCLUSION 

 

The study provided death prediction models based on the SARS databases of 

the Brazilian Ministry of Health for children in the northern region of Brazil, as well as 

software for using these models to assist health professionals in the early identification 

of severe cases of SARS. The knowledge generated is considered to have the potential 

to provide health agents with prior knowledge about the prognosis of more severe 

patients and thus better allocate human and/or material resources for their treatment. 

This more effective allocation of resources is important in low- and middle-income 

regions, where these resources are scarce and periodically record an increase in the 

rates of SARS cases, such as during the period of fires in the northern region. 
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