DESENVOLVIMENTO DE MODELOS PREDITIVOS COM MACHINE LEARNING - ANÁLISE DE DADOS PARA SAÚDE DE GESTANTES E PUÉRPERAS

Autores/as

  • Jackson Henrique da Silva Bezerra
  • Fabrício Moraes de Almeida

Palabras clave:

Machine Learning (ML), Banco de dados, Síndrome Respiratória Aguda Grave (SRAG), Modelos Preditivos

Resumen

O Machine Learning (ML) tem um papel importante na área da saúde, fornecendo modelos preditivos criados a partir de algoritmos e grandes bases de dados. Estes modelos podem classificar pacientes para fins de diagnóstico ou prognósticos em diversas doenças. A presente pesquisa teve como objetivo o desenvolvimento de modelos preditivos de óbito por Síndrome Respiratória Aguda Grave (SRAG) em grupos populacionais vulneráveis na região Norte do Brasil. Para atingir este objetivo o estudo utilizou dados de gestantes e puérperas disponibilizados pelo Ministério da Saúde do Brasil. Como procedimento metodológico, foi realizado uma pesquisa aplicada através da metodologia CRISP-DM, que guiou todo o processo de seleção, processamento, transformação, aplicação dos algoritmos de ML e avaliação dos modelos preditivos. Os algoritmos Random Forest, Regression Logistic, K-Nearest Neighbors e XGBoost foram utilizados através do software Weka e biblioteca de código R, onde os modelos com Random Forest tiveram desempenho superior. Para garantir a confiança dos modelos foi utilizada a validação cruzada. Os modelos foram avaliados conforme as métricas de sensibilidade, especificidade, acurácia, precisão, F1-Score e AUC-ROC, sendo esta última a métrica primária de avaliação. Por fim, um protótipo de aplicação de software para uso dos modelos foi desenvolvido na linguagem Java para que o conhecimento gerado pelo modelo chegue aos profissionais da área da saúde. Os resultados deste estudo contribuem para a redução de óbitos por SRAG no público materno da região Norte do Brasil, contribuindo para o cumprimento das metas do Brasil na redução da mortalidade materna.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2024-09-12

Cómo citar

Jackson Henrique da Silva Bezerra, & Fabrício Moraes de Almeida. (2024). DESENVOLVIMENTO DE MODELOS PREDITIVOS COM MACHINE LEARNING - ANÁLISE DE DADOS PARA SAÚDE DE GESTANTES E PUÉRPERAS. InterSciencePlace, 19. Recuperado a partir de https://interscienceplace.org/index.php/isp/article/view/763

Número

Sección

Articles

Artículos más leídos del mismo autor/a