DESENVOLVIMENTO DE MODELOS PREDITIVOS COM MACHINE LEARNING - ANÁLISE DE DADOS PARA SAÚDE DE GESTANTES E PUÉRPERAS
Palavras-chave:
Machine Learning (ML), Banco de dados, Síndrome Respiratória Aguda Grave (SRAG), Modelos PreditivosResumo
O Machine Learning (ML) tem um papel importante na área da saúde, fornecendo modelos preditivos criados a partir de algoritmos e grandes bases de dados. Estes modelos podem classificar pacientes para fins de diagnóstico ou prognósticos em diversas doenças. A presente pesquisa teve como objetivo o desenvolvimento de modelos preditivos de óbito por Síndrome Respiratória Aguda Grave (SRAG) em grupos populacionais vulneráveis na região Norte do Brasil. Para atingir este objetivo o estudo utilizou dados de gestantes e puérperas disponibilizados pelo Ministério da Saúde do Brasil. Como procedimento metodológico, foi realizado uma pesquisa aplicada através da metodologia CRISP-DM, que guiou todo o processo de seleção, processamento, transformação, aplicação dos algoritmos de ML e avaliação dos modelos preditivos. Os algoritmos Random Forest, Regression Logistic, K-Nearest Neighbors e XGBoost foram utilizados através do software Weka e biblioteca de código R, onde os modelos com Random Forest tiveram desempenho superior. Para garantir a confiança dos modelos foi utilizada a validação cruzada. Os modelos foram avaliados conforme as métricas de sensibilidade, especificidade, acurácia, precisão, F1-Score e AUC-ROC, sendo esta última a métrica primária de avaliação. Por fim, um protótipo de aplicação de software para uso dos modelos foi desenvolvido na linguagem Java para que o conhecimento gerado pelo modelo chegue aos profissionais da área da saúde. Os resultados deste estudo contribuem para a redução de óbitos por SRAG no público materno da região Norte do Brasil, contribuindo para o cumprimento das metas do Brasil na redução da mortalidade materna.
Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.